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Distances and volumina for graphs

D.J. Klein and H.-Y. Zhu
Texas A & M University at Galveston, Galveston, TX 77553-1675, USA

It has long been realized that connected graphs have some sort of geometric structure,
in that there is a natural distance function (or metric), namely, the shortest-path distance
function. In fact, there are several other natural yet intrinsic distance functions, including:
the resistance distance, correspondent “square-rooted” distance functions, and a so-called
“quasi-Euclidean” distance function. Some of these distance functions are introduced here,
and some are noted not only to satisfy the usual triangle inequality but also other relations
such as the “tetrahedron inequality”. Granted some (intrinsic) distance function, there are
different consequent graph-invariants. Here attention is directed to a sequence of graph
invariants which may be interpreted as: the sum of a power of the distances between pairs
of vertices of G, the sum of a power of the “areas” between triples of vertices of G, the sum
of a power of the “volumes” between quartets of vertices of G, etc. The Cayley–Menger
formula for n-volumes in Euclidean space is taken as the defining relation for so-called
“n-volumina” in terms of graph distances, and several theorems are here established for the
volumina-sum invariants (when the mentioned power is 2).

1. Introduction

Graphs are well-known [31] to be a natural mathematical correspondent to mole-
cular formulas, so that graphs and functions thereon are of chemical interest. One
such function would be a distance function (or metric) on the set of vertices of a
graph, especially if the function were intrinsic to the graph rather than dependent on
an extrinsic embedding in Euclidean space. The shortest-path distance function on a
connected graph is intrinsic, the distance between vertices i and j being the minimum
number of steps on a path between i and j. Indeed, this distance function has long
been studied in the graph theory literature, as indicated by Buckley and Harary’s book
on graph distances [4]. But, in fact, there are (many) other possible choices for an
intrinsic distance function – perhaps most simply by weighting the graph edges (and
consequent paths), and this decoration has been considered often. But we have in
mind more fundamental alternatives such as the resistance distance [18] (for which
the distance between vertices i and j may be viewed as just the effective electrical
resistance between i and j when unit resistors are placed on every edge of the graph).
In contrast to the shortest-path distance, this resistance distance has a notable oft-
plausible feature: if vertices i and j are connected by two (or more) paths, then they
are closer than if connected by only the shorter of these two paths. And often one may
view different parts of a molecule to communicate more readily the more pathways
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which interconnect the two parts, so that a chemical distance might plausibly lessen
without any change in the Euclidean or shortest-path distances. Perhaps the shortest-
path distance is more appropriate when dealing with localized particulate motion in
the network, whereas the resistance distance is more appropriate when dealing with
delocalized wave-like motion in the network. This resistance distance and other novel
intrinsic distances on graphs are discussed briefly in section 2. There also are noted
some sequences of conditions which (when satisfied by a distance function) implicate
an ever closer mimicking of the standard Euclidean circumstance. Then, e.g., natural
more faithful mimics are obtained as “square-roots” of other distance functions.

But granted some distance function d on a connected graph G there arise questions
as to what to do with d, and perhaps most suggestively what they might reveal about
a “geometry” of graphs. Such questions include:

• What are relevant consequent graph-geometric invariants to be defined in terms of
the distance function d?

• How do such invariants compare to corresponding quantities computed using
Euclidean distances for relevant embeddings in Euclidean space?

• Do such comparisons when favorable (at least for suitable d) indicate a special
chemical feasibility or stability?

• Could any of these distance functions lead to some sort of intrinsic “geometry of
graphs”?

As a first step toward addressing such questions attention is here directed to seemingly
natural double sequences of geometrically motivated graph invariants, which consist of
sums of powers of distances between pairs of vertices of G, sums of powers of “areas”
between triples of vertices of G, sums of powers of “volumes” between quartets of
vertices, etc. Of course, to do this we need to make some sort of sense of the n-di-
mensional “volumina”: areas (for n = 2), volumes (for n = 3), etc.

The recollection of results for a standard n-dimensional Euclidean space is of
use. The standard volume function for an n-dimensional polytope specified by the
vectors vi, 1, . . . ,n, issuing from a given vertex 0 is

voln(v1, v2, . . . , vn) = ±C det(V), (1.1)

where V is the n×nmatrix with ith column vi (while the sign records the “chirality” of
the ordered set of vectors), and the constant C scales the volume measure. The polytope
is usually viewed to be the n-parallelepiped with the n edges from vertex 0 being
coincident with the vi, and C = +1 is chosen so that the n-dimensional hypercube
has such a measure of +1 (or −1). But here we are interested in n-simplices, each
of which is also is specified by the vi, and we make the non-standard choice for C
whence the regular n-simplex with unit edges has a unit n-volume. But it is well
known that an n-simplex has an n-volume n! times smaller than the corresponding
n-parallelepiped. Thus, we choose C = 1/n! if we wish to interpret (1.1) as giving
the n-volume of an n-parallelepiped, or alternatively we choose C = 1 if we wish to
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interpret (1.1) as giving the n-volume of an n-simplex. Further squaring the above
n-volume formula leads one ultimately to the following result [5,20] (which is now
standard [3]):

Cayley–Menger theorem. For Euclidean space the square of the n-volume of the
n-simplex determined by the n+ 1 points at the vertices is

{
Vn(D1)

}2
= −(−2)−n det

(
D2 1n+1

1+
n+1 0

)
, (1.2)

where Dq is here the n+ 1 by n+ 1 matrix with (i, j)th element being the qth power
of the distance between the ith and jth vertices of this n-simplex, 1n+1 is the n + 1
by 1 column vector with all elements 1, and 1+

n+1 is the transpose of 1n+1.

This Cayley–Menger formula then is suitable for our present purposes in that all
that is required is the set of intersite distances. That is, granted a distance function for
a graph G, we presume equation (1.2) to be the defining relation for the n-volumen
associated to of an n + 1-element set of vertices of G, though on a general (non-
Euclidean) space this “square” of (1.2) need not be non-negative. (To remind that
these quantities as defined on such general spaces need not be fully like the ordinary
Euclidean-space n-volumes of n-simplices, we use Latinized names.) When (1.2) is
non-negative it seems natural to choose Vn(D1) as the non-negative square root.

The graph invariants proposed for study here are of the form

SG{Vn}p =
∑{

Vn(D1)
}p

, (1.3)

where N is the number of vertices of the graph G, the sum is over all sets of n + 1
vertices of G, and the {Vn(D1)}2 are the n-volumina of (1.2) for these n+1-element
sets of vertices. For n = 1 and for the usual shortest-path distance function some of
these invariants are already studied especially for p = 1 or 2. In particular, the p = 1
case is what is often called the “Wiener number” of G and has been utilized for some
time in making correlations with molecular properties – see Wiener’s original work
[32,33] or recent reviews [14,26,29] of the chemical literature – also there is some
mathematical work [7,9,22,23,25]. The p = 2 case turns out to be closely related [17]
to what has been introduced [19,27] as the “hyper-Wiener” index. Balaban [1] has
proposed that the root-mean-square distance should be a chemically useful invariant,
and in a similar context other moments [1,28] have been mentioned. The resistance-
distance analog of the Wiener index has also been noted [18] and there has been some
initial comment [17,36] on the resistance-distance analog of the “hyper-Wiener” index
and other related indices. Indeed, that for each formula for the Weiner index (based
on the shortest-path distance) there seems [36] to be an equally elegant corresponding
one for the resistance-distance analog.
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In section 3 we present some results for the p = 2 power (which from the defining
relation (1.2) might be anticipated to be an exceptional case). Indeed, we introduce a
novel polynomial invariant

PG(x) = det

{(
D2 1N
1+
N 0

)
− x

(
I 0N

0+
N 0

)}
, (1.4)

where Dq is now the full N ×N matrix of qth powers of distances, I is the N × N
identity matrix, and 0N is the N×1 column vector of all zeroes. In light of theorem 2
proved in section 3 we term PG(x) the volumina polynomial for G – this is further
shown to lead to an efficient method for the computation of the p = 2 volumina-sum
invariants of (1.3). In section 4 some simplified results for graphs of higher vertex
transitivity are noted, applying for so-called “graph-symmetric” distance functions. In
section 5 some further theorems for so-called “graph-geodetic” distance functions are
established for our invariants.

2. Distance functions and their characterization

The distance functions under consideration are defined with reference to a set V
of N distinct points (to be identified to the vertices of a graph). Such functions are a
special subclass of the class C of functions from V × V onto the real numbers. More
particularly, a distance function d is such that d ∈ C and

d(i, i) = 0, for all i ∈ V , (2.1)

d(i, j) = d(j, i) > 0, for all distinct pairs i, j ∈ V , (2.2)

d(i, j) + d(j, k) > d(i, k), for all distinct triples i, j, k ∈ V. (2.3)

We emphasize that on graph G there are relevant distance functions besides the
standard [4] shortest-path-based ones. One such of particular note is given in terms
of the effective resistance function Ω with Ωij being the resistance between vertices
i and j granted fixed (say unit) resistors on each edge of G. Another (non-electrical)
interpretation [8] of Ωij is 1/δiP (i → j), where δi is the degree of vertex i and
P (i→ j) is the probability of a random walker leaving i to arrive at j before returning
to i. A combinatorial interpretation [30] is that Ωij is a ratio with denominator being
the number of spanning trees of G and numerator being the number of spanning “bi-
trees”, one component of which contains vertex i and the other component of which
contains j. An algebraic representation of Ωij may be [18] given in terms of the
Laplacian matrix ∆ − A with ∆ the diagonal matrix of vertex degrees and A the
adjacency matrix. Then (as is perhaps “standard” in electrical engineering)

Ωij = φ+
i−j

{
Q

∆− A

}
φi−j , (2.4)

where φi−j is the column vector of all 0s except +1 and −1 in the ith and jth
positions, Q is the idempotent projection matrix onto the orthogonal complement to
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the null-space of ∆ − A, and {Q/(∆ − A)} is the generalized inverse, which is 0
on the null-space of ∆ − A while on the Q-space it is a nonsingular inverse. We
term Ω the resistance distance, though a possible alternative nomenclature (noted by
Prof. F. Harary) would term this the “electric metric”. But to emphasize that Ω has
a formal definition independent of electric circuits the phrase “electric metric” seems
slightly less favorable (there being other kinds of resistance than electrical).

Various distance-function subclasses of relevance can be identified through con-
straining conditions forcing the functions to “mimic” in further ways the standard
Euclidean distance (function), denoted dE . In fact, we identify three natural sequences
of conditions, the first two of which have been investigated by Menger [21] and by
Blumenthal [2,3].

The first sequence of conditions on a function d ∈ C consists of the n-Euclidean
conditions, for n = 0, 1, 2, . . . ,N − 1. For a given n the condition is that for every
(n+ 1)-element subset S ⊆ V there exists a corresponding (n+ 1)-point subset S ′ of
n-dimensional Euclidean space E = En such that if i′ ∈ S ′ corresponds to i ∈ S, then

d(i, j) = dE(i′, j′), for all i, j ∈ S. (2.5)

That is, every set S of (n+1) points in V can be isometrically (or faithfully) embedded
into Euclidean space so that d gives values corresponding to the Euclidean distances on
this subset S. The 0-Euclidean condition is equivalent to the “identity” condition (2.1).
The 1-Euclidean condition is equivalent to the “symmetry/positivity” condition (2.2).
The 2-Euclidean condition is equivalent to the “triangle” condition (2.3). That is,
the usual definition of a distance function d is seen to be equivalent to demanding
that d satisfy the Euclidean n = 0-, 1- and 2-Euclidean conditions. The 3-Euclidean
condition demands an even greater degree of mimicry, which not all distance functions
satisfy. For example, the shortest-path distance function for the 4-cycle graph does not
satisfy the 3-Euclidean condition. However, there are transformed distance functions
guaranteed to satisfy the 3-Euclidean condition. Given d, one can define

dα(i, j) ≡
{
d(i, j)

}α
, for all i, j ∈ V , (2.6)

whence there can be proved [2] the following:

Blumenthal’s “Square-Root” theorem. For 0 6 α 6 1/2, the function dα is a dis-
tance function satisfying the 3-Euclidean condition.

Of all these dα evidently d1/2 bears the greatest “similarity” to d, and so may be
viewed to play a special role. This d1/2 corresponding to the standard shortest-path
distance function d on graphs has seemingly not been previously explored, and the
same statement applies as regards the square-rooted resistance distance. Of related
interest are functions d(m) (for real m) from V × V taking values

d(m)(i, j) ≡
(
φ+
i−j

{
Q

∆− A

}m
φi−j

)1/2

, (2.7)
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where the notation follows that of equation (2.4). Evidently, d(1) is the d1/2 corre-
sponding to the resistance distance. Generally, d(m) satisfies the condition of (2.1),
and the interchange symmetry of its arguments is evident. A well-known (and readily
verified) fact is that the column-vector 1N of all ones is an eigenvector to ∆−A with
eigenvalue 0. Evidently, too φi−j is orthogonal to 1N , so that the matrix elements
of φi−j over the matrix {Q/(∆ − A)}m must be the same as over the mth power of
Mx ≡ {Q/(∆−A)} +xQ. But too since (for a connected graph) all other eigenvalues
of {Q/(∆−A)} exceed 0, it is evident that Mx is positive definite so long as x > 0 .
But then the function d(m) is a standard Euclidean-type vector-space distance function
using this positive definite matrix Mx to define the metric. Thus there follows:

Theorem 1. The graph functions d(m) are distance functions satisfying all the n-Euc-
lidean conditions.

Of all these distance functions d(2) shares a particular feature with Ω: both scale
linearly with inverses of the (non-zero) elements of A. Such an inversive scaling also
applies for the shortest-path distance if we imagine an increase in a non-zero element of
A to indicate an enhanced “contact”, corresponding to shorter distances. This distance
function d(2) we term quasi-Euclidean.

A second natural sequence of conditions on a function satisfying equations (2.1)
and (2.2) consists of the n-volumina positivity conditions, for n = 2, 3, . . . ,N − 1.
For a given n the condition is that every (n + 1)-element subset S of V is such that
formula (1.2) for {Vn(D1)}2 gives a non-negative result. Here the (n = 2)-volumina
positivity condition is equivalent to the triangle condition, as may be seen on expanding
the (n = 2)-determinant of (1.2) to give{

V2(D1)
}2

=
1
4
s∆i(j, k)∆j(k, i)∆k(i, j), (2.8)

where ∆i(j, k) ≡ d(i, j) + d(k, i) − d(j, k) and s is the sum of the three different dis-
tances – then (granted (2.1) and (2.2)) one sees that s > 0 and no more than one of
the ∆ may be negative, so that non-negativity of (2.8) implies nonnegativity of every
∆-term there and consequently the triangle inequality is implied. The n-volumina
positivity conditions and n-Euclidean conditions turn out to be [21] in general equiv-
alent. See also section 40 of Blumenthal [3]. Further, 4-Euclideanicity implies [34]
n-Euclideanicity.

A third natural sequence of conditions on a function satisfying equations (2.1) and
(2.2) consists of the n-simplex conditions, for n = 2, 3, . . . ,N − 1. For a given n the
condition is that every (n+ 1)-element subset S of V is such that the (n−1)-volumen
of any n-element subset of S is no larger than the sum of the (n− 1)-volumina of the
n other n-element subsets of S. Evidently, the n = 2 condition here is the familiar
“triangle” condition of equation (2.3). The present n = 3 condition says that the
area of any face of a tetrahedron does not exceed the sum of the areas of the other
three faces – thence it is naturally called the “tetrahedron” inequality. Clearly, the
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Figure 1. Construction to illustrate failure of 3-Euclideanicity even though the tetrahedron inequality is
satisfied.

n-Euclidean condition implies the n-simplex condition. But, contrary to a statement
made elsewhere [24], the converse is not generally true. As an example to this effect
for n = 3, consider four points 0,1,2,3 with d(1, 0) = 3/2, d(2, 0) = d(3, 0) =
2/3, d(1, 2) = d(2, 3) = d(3, 1) = 1 – here the veracity of this as an example is seen
from figure 1, where we have faithfully embedded the vertices 1,2,3 in the Euclidean
plane of the paper, and then added the point 0 in three possible ways forming three
new faithful triangles, each having one of its sides in common with the 1,2,3-triangle.
Evidently, if the 1,3- and 1,2-edges of the 0,1,3- and 0,1,2-triangles are to be fixed on
the 1,2,3-triangle there is no way for their 0,1-edges to be brought into contact (while
keeping the Euclidean distances fixed). That is, there is no faithful embedding for this
tetrahedron (in 3-dimensional Euclidean space), though the tetrahedron-inequality is
clearly satisfied.

3. General theorematic results for volumina sums

There are some volumina-polynomial-related theorems which may be established
for general distance functions on V = V (G), though these results are concerned with
the special power p = 2 (appearing in (1.3) and (1.4)). A distance function is viewed
to be specified by the matrix D1 of its values. It turns out that the volumina polynomial
of (1.4) is intimately related to the power p = 2 volumina sums.

Theorem 2. For the definitions of section 1, with N the order of V ,

PG(x) = −
N−1∑
n=1

(−2)nSG{Vn}2(−x)N−n−1. (3.1)

Proof. From the determinantal definition of PG(x) in (1.4) one sees that factors of x
arise whenever a permutation in the expansion of this determinant leaves some indices
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fixed (since the only elements on the diagonal of the net matrix being operated on are
x, and no others involve x). That is,

PG(x) =
N−1∑
n=0

(−x)N−n−1
∑
i(n+1)

det

(
D2,i(n+1) 1n+1

1+
n+1 0

)
, (3.2)

where i(n + 1) ≡ (i1, i2, . . . , in+1) is an ordered (n + 1)-tuple of row (and column)
indices 1 6 i1 < i2 < · · · < in+1 6 N , D2,i(n+1) is the submatrix of D2 associated to
the indicated rows and columns, and 1n+1 is the column vector of (n + 1) elements
of 1. Here we have not included in the sum a term for the power xN since it is
recognized that no permutation fixing the last index (N + 1) can survive (because this
diagonal element is 0), and so the only surviving permutations must also move some
other index as well. Now from equation (1.2) one identifies the present determinantal
quantities as n-volumina for the implicit n-simplices specified by the points of i(n+1).
That is,

PG(x) =
N−1∑
n=0

−(−x)N−n−1(−2)n
∑
i(n+1)

{
Vn(D2,i(n+1))

}2
, (3.3)

and comparison of this with equation (1.3) yields the theorem. �

This result (of theorem 2) leads to an efficient means of computation of the
SG{Vn}2 even for larger n:

Theorem 3. For the definitions of section 1,

SG{Vn}2 = (−2)−n
∑
j

u2
jSn(j), (3.4)

where uj is the sum of the components of jth orthonormal eigenvector to D2, and Sn(j)
is the sum over all n-fold products of eigenvalues to D2 excluding the jth eigenvalue.

Proof. The determinant appearing in the definition of PG(x) remains invariant under
the application of a unitary transformation, say(

U 0N
0+
N 1

)
, (3.5)

with U diagonalizing D2, thusly (
U+D2U

)
ij

= δijΛi, (3.6)

where Λi is the ith eigenvalue to D2. Then, letting Λ be the diagonal matrix of these
Λi, one has

PG(x) = det

(
Λ− xI U+1N
1+UN 0

)
, (3.7)
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a result involving an (N+1)×(N+1) matrix which is diagonal except for the last row
and column. Since the last index must be moved by the permutations in the expansion
of this determinant (the last diagonal element being 0), one has

PG(x) =
N∑
j=1

(−1)
(
U+1N

)
j

(
1+
NU
)
j

∏
i6=j

(Λi − x). (3.8)

Here (
1+
NU
)
j

=
∑
i

Uij ≡ uj (3.9)

is the sum of the elements of the jth eigenvector (when it is normalized). Then
expanding our last formula for PG(x) it is seen that the coefficient of (−x)N−n−1 is

N∑
j=1

(
−u2

j

) ∑
i(n)63j

∏
ik∈i(n)

Λik , (3.10)

where also we have presumed that uj is real (as may be done for eigenvectors of a
real symmetric matrix, as D2). Recognition of the inner summation here as giving
Sn(j) followed by a comparison to the coefficients in theorem 2 yields the present
theorem. �

The volumina polynomial may be related to another polynomial of a type already
introduced (for the shortest-path distance) elsewhere [6,12,13,15]. We define the qth
distance polynomial as

D(q)
G (x) ≡ det{Dq − xI}. (3.11)

The q = 1 case is that previously defined [6,12,13,15] (for the shortest-path distance),
but the q = 2 case may be more directly related to our present volumina polynomial.
To see this define coefficients Sn(0) in the expansion of the q = 2 distance polynomial
thus

D(2)
G (x) =

N∑
n=0

Sn(0)(−x)N−n. (3.12)

The basic inter-relation between coefficients of the two types of polynomials now is
given by:

Theorem 4. Let Λj be the jth eigenvalue to D2. Then

Sn+1(0) = ΛjSn(j) + Sn+1(j) =
1

N − n

N∑
j=1

Sn+1(j), n = 0, . . . ,N − 1, (3.13)
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where S0(j) ≡ S0(0) ≡ 1, and conversely,

Sn(j) =
n∑
k=0

(−Λj)kSn−k(0). (3.14)

Proof. Following much the same idea as in theorem 3 one obtains the coefficient
Sn+1(0) of (−x)N−n+1 to be the sum over all products of n + 1 eigenvalues of D2.
But such a sum is clearly given in terms of the sums Sn(j) as indicated by the first
equality of the present theorem. The expression giving Sn(j) in terms of the Sn−k(0)
is obtained by inversion. �

Of course the polynomial D(2)
G (x) for d1/2 is identical with D(1)

G (x) for d, so that

these results can relate back to the already discussed [6,12,13,15] D(1)
G (x) case.

But too an effective means to compute the SG{Vn}2 is obtained. The coeffi-
cients Sn(0) are computable in polynomial time in N as the coefficients of the secular
equation (3.11) for q = 2, and so to are the eigenvalues Λi and eigenvector sums uj
of (3.9). Then the Sn(j) are computed by (3.14), and finally, the desired volumina-sum
invariants SG{Vn}2 are obtained via (3.4).

4. Transitivity and volumina sums

Whenever a (connected) graph has suitable “transitivity” features, somewhat more
explicit results apply for our volumina-sum invariants for several of the considered
distance functions on graphs. Let A(G) denote the automorphism group of the graph,
this group consisting of permutations on the V (G) such that when any P ∈ A(G) is
applied (in the natural fashion) to the edges of E(G) the consequent graph is just G
again. For P ∈ A(G) and i ∈ V (G) denote the vertex to which P sends i by Pi.
Now define a distance function on G to be graph-symmetric iff

d(Pi,Pj) = d(i, j), ∀i, j ∈ V (G), ∀P ∈ A(G). (4.1)

Evidently, the shortest-path and resistance distance as well as their square-rooted deriv-
ative distances are all so symmetric, though often Euclidean distances associated to
embeddings in Euclidean 3-space are not. Throughout the remainder of the paper we
presume that all distances are graph-symmetric.

The consequent simplifications of the results in the preceding section relate to
the orbit structure of G, the orbits being equivalence classes of V (G) under the action
of elements of A(G). Let α = 1, 2, . . . , r label the distinct orbits Oα of V (G), and
let uα denote the N × 1 column vector with elements labelled by i ∈ V (G) being
1 or 0 as i ∈ Oα or i /∈ Oα. Then since Dq commutes with the natural matrix
representation P for P ∈ A(G) (for a graph-symmetric distance function), one sees
that the r-dimensional space spanned by the different uα is invariant under action
by Dq – that is, Puα = uα and PDquα = Dquα. Thus there are r independent
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eigenvectors to Dq entirely within this r-dimensional “symmetric” subspace. Moreover,
the eigenproblem on this subspace is soluble in terms of an r × r contracted distance
power matrix Dcon

q , with elements(
Dcon
q

)
αβ
≡ (#α#β)−1/2

∑
i∈Oα

∑
j∈Oβ

d(i, j)q , (4.2)

where #α is the order of the αth orbit Oα. This (real symmetric) matrix has r inde-
pendent eigensolutions

Dcon
q wcon

ξ = Λξwcon
ξ . (4.3)

Then defining wξ ≡
∑

αw
con
ξα #−1/2

α uα, one sees (for i ∈ Oα)

(Dqwξ)i =
∑
β

∑
j∈Oβ

d(i, j)qwcon
ξβ #−1/2

β =
∑
β

#−1/2
α

(
Dcon
q

)
αβ
wξβ

= Λξ#−1/2
α wcon

ξα = Λξwξi, (4.4)

so that r eigensolutions to Dq are obtained. But now the vector 1N appearing in
the uj of theorem 3 is clearly contained within the present r-dimensional symmetric
subspace, whence 1N is orthogonal to the other n− r “non-symmetric” eigenvectors
to Dq. That is, only r terms survive in the j-sum of theorem 3, and there results:

Theorem 5. For a graph-symmetric distance function for a graph G with r orbits
under A(G),

SG{Vn}2 = (−2)−n
∑
ξ

w2
ξSn(ξ), (4.5)

where wξ ≡
∑

αw
con
ξα #−1/2

α with wcon
ξα the αth component of the ξth orthonormal

eigenvector to Dcon
2 .

We may specialize this to the transitive (or, more precisely, vertex-transitive)
case, this being defined to be the case where there is a single orbit (r = 1).

Corollary 1. For the r = 1 case with a graph-symmetric distance function,

SG{Vn}2 =
(−2)−n

N
Sn(1), (4.6)

where ξ = 1 labels the maximum eigenvalue.

Of course, there are many types of transitive graphs including the cyclic graphs
and the complete graphs KN . For KN , the final n-volumina mean can easily be seen
directly from the definition to be δn, if δ is the common distance between every pair
of vertices.
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The next simplest case involves r = 2 orbits. One class of such graphs are
the complete bipartite graphs KA,B comprised of A-element and B-element sets of
vertices, every member of either set being joined by edges to exactly all of those of
the other set. (For A = B, there is just r = 1 orbit.) Let a, b and c be the intersite
distances, respectively, between: two elements of the first set Oα, two elements of the
second set Oβ , and two elements one from each set. Here A and B are the numbers
of elements in Oα and Oβ . Now

Dcon
2 =

(
a2/A c2/

√
AB

c2/
√
AB b2/B

)
, (4.7)

so that the ξth eigenproblem is readily solved, and the wξ of theorem 5 determined.
But further, the additional eigenvalues going into the Sn(ξ) are also readily found. As
a first step toward obtaining these note that D2 can be written in the form

D2 =

(
a2(Jαα − Iα) c2Jαβ

c2Jβα b2(Jββ − Jβ)

)
, (4.8)

where Iα and Iβ are the identity matrices on the α- and β-subspaces while Jαα, Jαβ , Jβα
and Jββ are the A × A, A × B, B × A and B × B matrices of all ones. Next, let
vα be any vector of the α-subspace such that it is orthogonal to uα (the vectors of all
ones within the α-subspace), so that∑

i∈Oα
ναi = v+

αuα = 0. (4.9)

Then

(D2vα)i =

{
a2∑

j∈Oα(1− δij)vαj = −a2vαi, i ∈ Oα,
c2∑

j∈Oα vαj = 0, i ∈ Oβ ,
(4.10)

whence every vector of this (A−1)-dimensional α-subspace is seen to be an eigenvector
with eigenvalue −a2. Likewise, one may define β-subspace vectors vβ such that
v+
β uβ = 0 and find they span the (B − 1)-dimensional β-subspace with eigenvalue

−b2. Thus we have (after a little straight-forward manipulation):

Theorem 6. Let a, b, c be the αα, ββ, αβ distances between vertices of the α and
β sets of G = KA,B. Then

SG{Vn}2 = (−2)−n
{
w2

+Sn(+) + w2
−Sn(−)

}
, (4.11)

where for σ = + or −,

w2
σ = 1 + σc2/

(
R
√
AB

)
,

R =

{(
a2B − b2A

2AB

)2

+
c4

AB

}1/2

,

Sn(σ) = λσSn−1(±) + Sn(±), (4.12)
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λσ =
a2B + b2A

2AB
+ σR,

Sn(±) =

x+y=n∑
x,y

(
A− 1

x

)(
B − 1

y

)(
−a2)x(−b2)y.

Here the λσ are the eigenvalues to Dcon
2 and Sn(±) is the sum over n-fold products of

the A− 1 and B − 1 eigenvalues of −a2 and −b2 of D2.

5. Volumina-sum recursions for “square-rooted” distances

For particular “square-rooted” distance functions, systematic recursion formulas
for the mean n-volumina may be developed. A distance function d on a graph G is
said to be graph-geodetic iff: whenever all paths between two vertices i, k ∈ V (G)
pass through a third point j ∈ V (G), it follows that d(i, j) + d(j, k) = d(i, k). The
shortest-path distance function clearly is so graph-geodetic, and as it turns out [18]
the resistance distance is too. Some proofs for theorems concerning the shortest-
path distance function apply directly to any graph-geodetic distance function. For
example, the theorem of [18, section 7] for the resistance distance is an analogue of the
earlier result [12] for the shortest-path distance – but it applies for any graph-geodetic
distance. Here for a graph-geodetic distance d we consider the mean n-volumina for the
associated “square-rooted” distance d1/2 (this thereby satisfying the (n = 3)-Euclidean
conditions of section 2).

The recursions to be developed involve related graphs differing in but one or two
vertices. Of particular relevance will be graphs related as in figure 2. That is, the
two graphs are the same except that a cut-edge (between vertices x and y) in L− R
is eliminated in L · R with the previous other connections in L− R to y replaced by
connections to x. Notably the distances between vertices i of L and j of R will be
d(x, y) less in L · R than in L− R. A useful (working) lemma is:

Lemma 7. Let L− R and L · R be related as in the preceding figure, let d be a graph-
geodetic distance function (on L− R and L · R), and let D1 be the (n + 1) × (n + 1)
matrix of d1/2 distances associated with a set S of n+ 1 vertices of L− R. Then:

(a) for no vertices of R in S, {
Vn(D1)

}2
=
{
Vn
(
D′1
)}2

; (5.1)

Figure 2. Graphs L− R and L · R.
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(b) for one vertex j of R in S,{
Vn(D1)

}2
=
{
Vn
(
D′1
)}2

= d(x, y)
{
Vn−1

(
D′1(j)

)}2
; (5.2)

(c) for x, y both in S, {
Vn(D1)

}2
= d(x, y)

{
Vn−1

(
D′1(y)

)}2
, (5.3)

where D′1 denotes the corresponding d1/2 distance matrix for L · R and the parenthetic
subscript on D′1(j) indicates that vertex j is deleted.

Proof. The result of (a) is trivial. For the case (b), the matrix appearing in the
definition of {Vn(D1)}2 is of the form∣∣∣∣∣ d(i, i′) d(i,x) + δ + d(y, j) 1

d(j, y) + δ + d(x, i′) 0 1
1 1 0

∣∣∣∣∣ , (5.4)

where δ ≡ d(x, y) and we have indicated just one representative row i and one rep-
resentative column i′ for the n rows and columns associated to vertices of L. Now
the determinant of this matrix remains unchanged upon subtraction of δ times the last
column from the next to last – and likewise upon subtraction of δ times the last row
from the next to the last. This leaves

det

∣∣∣∣∣ d(i, i′) d(i,x) + d(y, j) 1
d(j, y) + d(x, i′) −2δ 1

1 1 0

∣∣∣∣∣ . (5.5)

Here the (i, j) and (j, i′) entries entail just the d-distances for L · R. Thus on expansion
of the determinant one obtains

det

∣∣∣∣∣ d(i, i′) d′(i, j) 1
d′(j, i′) 0 1

1 1 0

∣∣∣∣∣− 2δ · det

∣∣∣∣ d(i, i′) 1
1 0

∣∣∣∣ , (5.6)

which leads directly (via the definition of (1.2)) to part (b) of the lemma. Next, for
part (c), the matrix appearing in the definition of {Vn(D1)}2 takes the form∣∣∣∣∣∣∣∣∣

d(i, i′) d(i,x) d(i,x) + δ d(i,x) + δ + d(y, j′) 1
d(x, i′) 0 δ δ + d(y, j′) 1

δ + d(x, i′) δ 0 d(y, j′) 1
d(j,x) + δ + d(x, i′) d(j, y) + δ d(j, y) 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣ , (5.7)

where again, we have shown just representative rows and columns for vertices other
than x and y – here i, i′ ∈ V (L) while j, j′ ∈ V (R), though it is not required that there
necessarily be vertices from one or the other of these two parts of L− R. Again, the
determinant of this matrix remains unchanged upon subtraction of row x from rows i,
and of column x from columns i′. Further, one can subtract row y from rows j, and
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column y from columns j′. Yet further, after subtraction of row (and column) x from
row (and column) y, one is left with

det

∣∣∣∣∣∣∣∣∣
d(i, i′)− d(x, i′)− d(i,x) d(i,x) 0 0 0

d(x, i′) 0 δ d(y, j′) 1
0 δ −2δ 0 0
0 d(j, y) 0 d(j, j′)− d(j, y)− d(y, j′) 0
0 1 0 0 0

∣∣∣∣∣∣∣∣∣ . (5.8)

Here subtraction of δ times the last column from column y leaves just one non-zero
element in column y. Then making a Laplace expansion down this column gives the
determinant of our n-volumina square as

−2δ ·det

∣∣∣∣∣∣∣
d(i, i′)− d(x, i′)− d(i,x) d(i,x) 0 0

d(x, i′) 0 d(x, j′) 1
0 d(j, y) d(j, j′)− d(j, y)− d(y, j′) 0
0 1 0 0

∣∣∣∣∣∣∣ . (5.9)

Finally, addition of the remnant row x to rows i and j, as well as addition of column x
to columns i′ and j′ leads to the result of part (c). �

With part (c) of lemma 7 in hand, a corollary readily follows (for the case, where
the volumina mean consists of a single term):

Corollary 2. Let graphs L− R and L · R be as in lemma 7, let d be graph-geodetic,
and let N be the number of vertices in L · R. Then for d1/2,

SL−R{VN}2 = d(x, y)SL·R{VN−1}2. (5.10)

Of course, n-volumina where n+ 1 is the total number of vertices in the graph
form a rather special case. Another special case is for n = 2, when there are triples
of points with all or 1 vertex in either L or R, so that the recursions of parts (a) and
(b) of lemma 7 may be applied. When all 3 points are in the same part (L or R), the
recursion (a) does not yield the second term that arises with that of (b), so that not all
the terms of SL·R{V1}2 arise “directly” – but these missing terms are precisely those
of SL{V1}2 and SR{V1}2. Thus:

Theorem 8. Assume the hypothesis of lemma 7. Then for d1/2,

SL−R{V2}2 = SL·R{V2}2 + d(x, y)
(
SL·R{V1}2 − SL{V1}2 − SR{V1}2). (5.11)

Next, the conditions on n for these n-volumina sums may be related if there is
made a further restriction on the graphs involved. In particular, one of the two parts
(say R) of L− R may be limited to have just one vertex. That is, the graphs L− R
and L · R are presumed limited to the forms shown in figure 3. Now there is never
more than one vertex in R for an n-simplex in the n-volumina sum for L− R, and an
argument much like that for theorem 8 applies, to give:
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Figure 3. Graphs L− y and L.

Theorem 9. Let L − y and L be as in figure 3, and let d be graph-geodetic. Then
for d1/2,

SL−y{Vn}2 = SL{Vn}2 + d(x, y)SL{Vn−1}2. (5.12)

For trees these recursion relations may be iterated down to the 1- and 2-site
graphs.

6. Conclusion

It has here been suggested that for graphs, there are several intrinsic distance
functions of natural interest. The present work indicates some possible directions of
mathematical inquiry as regards such more general distance functions, particularly as
regards the consequent volumina-sum invariants. Section 2 has identified some novel
intrinsic metrics on graphs. The results of section 3 encompass an efficient general
method for computing these new invariants, and sections 4 and 5 identify some more
results for special sorts of graphs or distance functions. But also, there is some other
related work. For instance, subsequent to the results reported here, further relations to
other mathematical work (particularly, by Fiedler [10,11] and Merris [22]) has been
elaborated in [16]. And further “graph-geometric” invariants have been proposed
in [35], with an initial indication that for plausible molecular geometries, extrinsic
Euclidean distances and consequent graph invariants correspond relatively favorably
when the resistance distance or quasi-Euclidean distance is used. Could there be a
“geometry of graphs”? Could it have deep relevance for chemistry?
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[28] M. Randić, Molecular shape profiles, J. Chem. Inf. Comput. Sci. 35 (1995) 373–382.
[29] D.H. Rouvray, The role of the topological distance matrix in chemistry, in: Mathematical and

Computational Concepts in Chemistry, ed. N. Trinajstić (Ellis Horwood, Chichester, 1986) pp. 295–
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